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Abstract
As an outgrowth of our investigation of non-regular spaces within the context of
quantum gravity and non-commutative geometry, we develop a graph Hilbert
space framework on arbitrary (infinite) graphs and use it to study spectral
properties of graph Laplacians and graph Dirac operators. We define a spectral
triplet sharing most of the properties of what Connes calls a spectral triple.
With the help of this scheme we derive an explicit expression for the Connes-
distance function on general directed or undirected graphs. We derive a series
of a priori estimates and calculate it for a variety of examples of graphs. As a
possibly interesting side, we show that the natural setting for approaching such
problems may be the framework of (non)linear programming or optimization.
We compare our results (arrived at within our particular framework) with those
of other authors and show that the seeming differences depend on the use of
different graph geometries and/or Dirac operators.

PACS numbers: 02.30.Sa, 02.30.Tb, 04.60.−m

1. Introduction

In recent years, we started a programme to reconstruct continuum physics and/or mathematics
from an underlying more primordial and basically discrete theory living on the Planck-scale
(cf [1–4, 37]). As a sort of a ‘spin-off’ various problems of a more mathematical and technical
flavour emerged which may have an interest of their own. Discrete differential geometric
concepts were dealt in [1], the theory of random graphs was a central theme of [2], topics of
dimension theory and fractal geometry were addressed in [4], and lump-spaces and random
metrics were treated in [37].

If one wants to recover the usual (differential) operators (or more generally, the concepts
of standard functional analysis), being used in ordinary continuum physics and mathematics,
by some sort of limiting process from their discrete protoforms, which live, for their part, on
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a relatively disordered discrete background such as, say, a network, it is reasonable as a first
step to analyse these discrete counterparts more closely. This will be one of our themes in
the following with particular emphasis on discrete Laplace and Dirac operators on general
graphs. In contrast to [16] we now also include arbitrary directed graphs. The main thrust
goes, however, into an analysis of metrical concepts on discrete (non-commutative) spaces
such as general graphs, being induced by graph Dirac operators and the Connes-distance
functional.

We note that the functional analysis on graphs is of interest both in pure and in applied
mathematics and also in various fields of (mathematical) physics. In general, discrete systems
have an increasing interest of their own or serve as easier to analyse prototypes of their
continuum counterparts. A few fields of applications are: graph theory in general, analysis on
(discrete) manifolds, lattice or discretized versions of physical models in statistical mechanics
and quantum field theory, non-commutative geometry, networks, fractal geometry, etc. From
the widely scattered (mathematical and physical) literature we mention ( possibly) very few
sources we are aware of. Some of them were of relevance for our own motivation, whereas
we came across some others only recently (see, e.g., [5–14, 20, 33]). Further literature,
e.g. [15], was pointed out to us by Mueller-Hoissen; the possible relevance of [17–19] was
brought to our notice by an unknown referee. Last, but not the least, there is the vast field
of discretized quantum gravity (see, e.g., [21, 22]). All these show that the sort of discrete
functional analysis we are dealing with in the following is presently a very active field with a
lot of different applications.

For the convenience of the reader we begin by compiling some concepts and tools dealing
with graph Hilbert spaces which we then use to investigate the spectral properties of graph
Laplacians and Dirac operators. In the next step we study and test concepts and ideas
which arose in the context of non-commutative geometry. As we (and others) showed in
preceding papers, networks and graphs may (or even should) be understood as examples
of non-commutative spaces. Currently an interesting topic in this field is the investigation
of certain distance functionals on ‘nasty’ or non-standard spaces and their mathematical or
physical ‘naturalness’. However, graphs carry a natural metric structure given by a distance
function d(x, y), with x, y two nodes of the graph (see the following sections). This fact was
already employed by us in [4] to develop dimensional concepts on graphs. Having Connes’
concept of distance in non-commutativegeometry in mind (cf ch VI of [5]), it is natural to try to
compute it in model systems, which in our context means arbitrary graphs, and compare it with
the already existing notion of graph distance mentioned above. (We note that the calculation
of the Connes distance for general graphs turns out to be surprisingly complex and leads to
perhaps unexpected connections to fields of mathematics, e.g. (non)linear programming or
optimization; see the last section.)

Therefore, as one of the many possible applications of our formalism, we construct
a protoform of what Connes calls a spectral triple, that is, a Hilbert space structure, a
corresponding representation of a certain (function) algebra and a (in our framework) natural
candidate for the so-called Dirac operator (not to be confused with the ordinary Dirac operator
of the Dirac equation), which encodes certain properties of the graph geometry. This will be
done in section 3.

In the last (and central) section, which deals with the distance concept derived from the
spectral triplet, we will investigate this concept more closely as far as graphs and similar
spaces are concerned. In this connection, some recent works should be mentioned, in which
Connes’ distance function was analysed in certain simple models, e.g. one-dimensional lattices
[25–27]. These papers show that it is a touchy business to isolate ‘the’ appropriate Dirac
operator (after all, different Dirac operators are expected to lead to different geometries!) and
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that it is perhaps worthwhile to scrutinize the whole topic in a more systematic way. We show,
in particular, that one may choose different Dirac operators on graphs (or rather, different types
of graphs over the same node set) which may lead to different results for the corresponding
Connes distance, for example.

The problem of finding suitable metrics on ‘non-standard’ spaces is a particularly
interesting research topic of its own, presently pursued by quite a few people (see the papers
by Rieffel [12] and Weaver [13] and the references therein). Another, earlier (and important),
source is [15]. We recently extended the investigation of metric structures to the so-called
lump spaces and probabilistic metric spaces (see [37, 38]) and employed it in the general
context of quantum gravity (cf [2]).

Remark: When we wrote an earlier draft of this paper, we were unaware of the content of
[15]. It happened only recently that we realized that various results we derived in connection
with the Dirac operators and the Connes distance can already be found in [15] and we try to
take care of this fact in the following. Both the technical approach and the motivation are,
however, not entirely identical. The interested reader may consult the electronic version of
our earlier draft [16].

The same applies to paper [10], where some of the Hilbert space methods were developed
which we later rederived in [16], being unaware of the prior results. As a consequence we
drop most of the technical steps leading to that part of our previous results overlapping with
the corresponding parts in the above-mentioned papers and refer, for simplicity, to [16] where
the interested reader can find more details.

2. A brief survey of differential and operator calculus on graphs and graph Hilbert
spaces

We give a brief survey of certain concepts and tools needed in the following analysis. While
our framework may deviate at various places from the more traditional one, employed in e.g.
algebraic graph theory (see, e.g. [8, 9, 17]), this is mainly done for greater mathematical
flexibility and generality and, on the other hand, possible physical applications (a case in point
being the analysis of non-commutative spaces). Most of the technical tools which are not
defined in detail in the following have been introduced in section 3 of [1].

2.1. Simple (symmetric) graphs

For simplicity, we assume the graph to be connected and locally finite (no elementary loops
and multiedges, whereas these could easily be incorporated in the framework), i.e. each node
(or vertex) is incident with only a finite number of edges (or bonds). To avoid operator domain
problems we usually make an even stronger assumption that the vertex or node degree, vi
(i labelling the nodes), is globally bounded but this restriction is frequently not really necessary.
Furthermore, it has turned out to be algebraically advantageous to identify an (undirected)
labelled graph with a directed graph having two oppositely directed edges for each undirected
edge, the directed edge, pointing from node ni to node nk, being denoted by dik, the oppositely
directed edge by dki and the undirected (but orientable) edge by their superposition

bik =dik − dki = −bki (1)

(dik and dki are treated as independent basis vectors; cf [1, 16]).
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As the elementary building blocks of our graph Hilbert spaces, we take {ni} and {dik}
as basis elements of a certain hierarchy of Hilbert spaces over, say, C with a scalar product
induced by

(ni|nk) = δik (dik|dlm) = δilδkm (2)

This definition implies (bik|bik) = 2.

Definition 2.1 (vertex, edge Hilbert space). The Hilbert spaces H0,H
a
1 (a for antisymmetric)

and H1 consist of the formal sums

f :=
∑

fini g :=
∑

gik dik with gik = −gki and g′ :=
∑

gik dik (3)∑
|fi |2 < ∞

∑
|gik|2 < ∞ (4)

fi, gik ranging over a certain given field, e.g. C (sometimes only rings, e.g. Z, are admitted;
then we are dealing only with modules). We evidently have H a

1 ⊂ H1.

Remark: One could continue this row of vector spaces in ways which are common practice
in, say, algebraic topology (see [1], sections 3.1 and 3.2). In this context they are frequently
called chain complexes (see also [20]). On the other hand, the above vector spaces could also
be viewed as discrete function spaces over the node, bond set with ni, dik now representing
the elementary indicator functions.

Continuing in this spirit we can now introduce two linear maps between H0 and H1,
extending the usual boundary and coboundary maps. On the basis elements they act as
follows:

δ: dik → nk hence bik → nk − ni (5)

d:ni →
∑
k

(dki − dik) =
∑
k

bki (6)

and are linearly extended. That is; δ maps the directed bonds dik onto the terminal node
and bik onto its (oriented) boundary, while d maps the node ni onto the sum of the ingoing
directed bonds minus the sum of the outgoing directed bonds or on the sum of oriented ingoing
bonds bki.

As was shown in [1] (we later realized that the same definition was already employed in
[15]), these definitions lead in fact to a kind of discrete differential calculus on H0, H1; that is,
we have

df = d
(∑

fini

)
=
∑
k,i

(fk − fi)dik. (7)

Combining now the operators δ and d, we can construct the canonical graph Laplacian.
On the vertex space it reads

δdf = −
∑
i

(∑
k

fk − vifi

)
ni = −

∑
i

(∑
k

(fk − fi)

)
ni =: −�f (8)

where vi denotes the node degree or valency defined above and the k-sum extends over the
nodes adjacent to ni.

Remark: Note that there exist several variants in the literature (see, e.g., [9, 17]). Furthermore,
many mathematicians employ a different sign convention. We stick, in the following, to the
convention used in the mathematical physics literature where −� is the positive(!) operator.

This graph Laplacian is intimately connected with another important object, employed in
algebraic graph theory, i.e. the adjacency matrixA of a graph, its entries, aik, having the value 1
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if the nodes ni, nk are connected by a bond and 0 elsewhere. If the graph is undirected (but
orientable), the relation between ni and nk is symmetric, i.e.

aik = 1 ⇒ aki = 1. (9)

This has the obvious consequence that in the case the graph is simple and undirected, A is a
symmetric matrix with zero diagonal elements.

Remark: More general A’s occur if more general graphs are admitted (e.g. general
multigraphs).

With our definition of � it holds that

� = A − V (10)

where V is the diagonal degree matrix, having vi as diagonal entries. (Note that the other sign
convention would lead to � = V − A.)

To avoid domain problems we assume from now on that the node degree vi is uniformly
bounded on the graph G, i.e.

vi � vmax < ∞. (11)

Defining d1,2 as

d1,2: ni →
∑

dki,
∑

dik (12)

respectively, and linearly extended, we get

d = d1 − d2. (13)

Similarly, we make the identification δ =: δ1 with

δ1,2 : dik → nk, ni . (14)

It is noteworthy (but actually not surprising) that vi � vmax implies that all the above
operators are bounded (in contrast to their continuous counterparts, which are typically
unbounded). Taking this for granted at the moment, a straightforward analysis yields the
following relations:

Lemma 2.2.

1. The adjoint d∗ of d with respect to the spaces H0, H a
1 is 2δ.

2. On the other hand we have for the natural extension of d, δ to the larger space H1:

δ1 = (d1)
∗ δ2 = (d2)

∗ (15)

hence

(δ1 − δ2) = (d1 − d2)
∗ = d∗ 
= 2δ = 2δ1. (16)

3. Furthermore it holds

d∗
1d1 = δ1d1 = d∗

2d2 = V : ni → vini (17)

(with V the vertex degree matrix)

d∗
1d2 = δ1d2 = d∗

2d1 = δ2d1 = A : ni →
∑
k−i

nk. (18)

Similar geometric properties of the graph are encoded in the products coming in reverse
order.
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(Here and in the following, k − i means summation over the first index and runs through the
set of labels of nodes directly connected with ni.)

d, d∗ encode certain geometric information about the graph which can be seen from
the following domain and range properties (cf [16]; for corresponding results in the more
traditional approach, see [8], p 24ff).

Theorem 2.3. Let the graph be connected and finite, |V| = n, then

dim(Rg(d∗)) = n − 1 (19)

dim(Ker(d∗)) =
∑
i

vi − (n − 1). (20)

With dim(H1) = ∑
i vi dim

(
H a

1

) = 1
2 dim(H1), we have

codim(Ker(d∗)) = dim(Rg(d)) = n − 1. (21)

We see that both Rg(d∗) and Rg(d ) have the same dimension (n − 1).

Remark 2.4. In the case the graph has, say, c components, the above results are altered in an
obvious way; we have, for example,

dim(Rg(d∗)) = n − c. (22)

In the literature Ker(d∗) is called (for obvious reasons) the cycle subspace (cf e.g. [8]).
On the antisymmetric subspace H a

1 we have d∗ = 2δ and δ(bik) = nk − ni . Choosing now a
cycle, given by its sequence of consecutive vertices ni1 , . . . , nik ; nik+1 := ni1 , we have

d∗
(∑

bilil+1

)
= 2

∑(
nil+1 − nil

) = 0 (23)

that is, vectors of this kind lie in the kernel of d∗.
We will now provide quantitative lower and upper bounds for the respective norms of the

occurring operators. We have

‖df ‖2 =
∑
ik

|(fk − fi)|2 =
∑
i

vi |fi|2 +
∑
k

vk|fk|2 −
∑
i 
=k

(fkfi + fifk)

= 2
∑
i

vi |fi |2 −2
∑
i 
=k

fkfi (24)

which can be written as

‖df ‖2 = 2((f |Vf ) − (f |Af )) = (f | −2�f) (25)

and shows the close relationship of the norm of d with the expectation values of the adjacency
and degree matrix or the graph Laplacian. That is, norm estimates for, say, d, are derived in a
natural manner from the corresponding estimates for A or −�. With

‖df ‖2 = (f |d∗df ) = (f | −2�f) (26)

we have

0 � d∗d = −2� and ‖d‖2 = sup
‖f ‖=1

(f | −2�f) = ‖ −2�‖. (27)

Furthermore, via

0 < sup
‖f ‖=1

(f | −2�f) � 2vmax + 2 sup
‖f ‖=1

|〈f |af 〉| (28)

we get

‖−�‖ � vmax + ‖A‖. (29)
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Remark: We want to mention that we are using the usual operator norm also for the matrices
(in contrast to most of the matrix literature), which is also called the spectral norm. It is
unique in so far as it coincides with the so-called spectral radius (cf e.g. [29, 30]), that is

‖A‖ := sup{|λ|; λ ∈ spectr(A)}. (30)

In the first step we give upper and lower bounds for the operator norm of the adjacency
matrix A, both in the finite- and in the infinite-dimensional cases. There are various proofs
available of varying degree of generality (see, e.g., [10, 16, 17]) to which we refer the reader.
In the following, we give only the final results. Note, however, that the transition from finite to
infinite graphs is far from straightforward, as in some of the necessary technical steps entirely
new methods are needed.

Theorem 2.5 (norm of A). With the adjacency matrix A finite or infinite and a finite vmax we
have the following result (a certain fixed labelling of the nodes being assumed):

lim supn−1
n∑

i=1

v
(n)
i � lim sup ‖An‖ = ‖A‖ = sup{|λ|; λ ∈ spectr(A)} � vmax. (31)

Here An are the adjacency matrices for the induced sub-graphs, living over the first n labelled
nodes, v(n)i is the corresponding induced (and n-dependent) node degree.

As a byproduct we have the important lemma.

Lemma 2.6. The adjacency matrices An converge strongly to A and we have in particular
‖An‖ ↗ ‖A‖.

(For a proof of the latter result see [10, 16]).

Remark 2.7. To prove strong convergence of operators is of some relevance for the limit
behaviour of spectral properties of the operators An, A . That is, (cf e.g. [31], section VIII.7),
we have in that case (An, A self-adjoint and uniformly bounded) An → A in the strong
resolvent sense, which implies that the spectrum of the limit operator A cannot suddenly
expand, i.e.

λ ∈ spec(A) ⇒ ∃λn ∈ spec(An) with λn → λ (32)

and for a, b 
∈ specpp(A)

P(a,b)(An) → P(a,b)(A) strongly. (33)

To test the effectiveness of the upper and lower bounds given above, we apply them to a
non-trivial model recently discussed in [32], i.e. the infinite binary tree with root n0, where v0

is 2 and vi equals 3 for i 
= 0. The authors show (among other things) that the spectrum consists
of the interval [−2

√
2, 2

√
2], i.e. ‖A‖ = 2

√
2, vmax is 3; we have to calculate lim sup 1

n

∑n
1 vi .

For simplicity, we choose a subsequence so that n := n(N) with N denoting the Nth level
(consisting of 2N nodes) of the tree starting from the root n0. Note that in the corresponding
induced sub-graph GN the boundary nodes placed in the Nth level have only one node degree
with respect to GN but three when viewed as nodes in the full tree.

We then have

n =
N∑
k=1

2k
n(N)∑
i=0

vi = 2 + 3
N−1∑
k=1

2k + 2N = 3
N∑
k=0

(2k − 2)(2N − 1). (34)

Hence

lim
n(N)

1/n(N)

n(N)∑
i=0

= 3 − 2 lim
N

(
N∑
0

2k−N

)−1

= 2. (35)

That is, our general estimate implies 2 � ‖A‖ � 3, which is not so bad.
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2.2. Arbitrary directed graphs

If we deal with the general directed graphs, we have both ingoing and outgoing edges at each
node but in general they no longer occur in a symmetric way. But nevertheless, most of our
concepts and tools, developed in the foregoing subsection, do still exist. The definitions of d
and d∗ are unaltered. As each edge, dik, is an outgoing edge for node ni and an ingoing edge
for node nk, the same expression holds for df , i.e.

df =
∑
i,k

(fi − fk)dik with f =
∑
i

fini (36)

(the sum of course extends only over those directed edges which do exist in the directed graph;
in particular, each edge, dik, is only counted once in the sum as an outgoing edge with respect
to the label i.) Furthermore, the notions of d1,2 and δ1,2 remain the same, mapping nodes or
edges on ingoing edges, outgoing nodes and vice versa. We again have

δ1,2 = d∗
1,2 and (δ1 − δ2) = d∗ = (d1 − d2). (37)

We can now calculate d∗
1d1 and d∗

2d2 and get

d∗
1d1(ni) = vin

i ni d∗
2d2(ni) = vout

i ni (38)

with v
in,out
i the in-, out-degree of the node ni . In the same way we can calculate

δ1d2(ni) =
∑

k−i,out

nk δ2d1(ni) =
∑
k−i,in

nk. (39)

This yields

d∗d = (δ1 − δ2)(d1 − d2) = (V in + V out) − (Ain + Aout) (40)

where the occurring operators on the rhs are the in-, out-vertex degree matrices and in-,
out-adjacency matrices, respectively.

In general, the individual in-, out-adjacency matrices are non-symmetric. Their sum,
however, is symmetric (and is, in the case of a symmetric graph, twice the adjacency matrix of
the undirected graph, i.e. 2A). One can now again define a (positive, i.e. symmetric) Laplace
operator for a non-symmetric (directed) graph, that is,

Conclusion 2.8

−� := d∗d = (V in + V out) − (Ain + Aout) =: Vd − Ad (41)

(Note the factor 2 now missing in front of �!)

3. The spectral triplet on a general (directed or undirected) graph

We begin by making some remarks on various concepts in use in the more recent literature.
We note that our version of a Dirac operator (defined below) intertwines node-vectors and
bond-vectorswhile in other examples it maps node to node functions. Our bond-functionshave
(in some sense) the character of cotangential vectors, while in other approaches derivatives of
functions are interpreted as tangent vectors. In our view, the latter point of view is effective
only in certain classes of highly regular models (e.g. lattices) where one has global directions,
which becomes cumbersome for general graphs. We developed this latter approach a little bit
in section 3.3 of [1] and showed how these cotangent and tangent vectors can be mapped into
each other. We think that, on the other hand, our framework is more flexible in the general case.
This holds, in particular, for our Dirac operator, which encodes certain geometric properties
of the underlying discrete ‘manifold’.
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The Hilbert space we will use in the following is

H = H0 ⊕ H1. (42)

The natural representation of the function algebraF (consisting of the bounded node functions){
f ; f ∈ C∞ i.e. sup

i

|fi | < ∞
}

(43)

on H by bounded operators is given by

H0: ff ′ =
∑

fif
′
i ni for f ′ ∈ H0 (44)

H1: f
∑

gikdik :=
∑

figikdik. (45)

From previous work [1] we know that H1 also carries a right-module structure, given by∑
gikdikf :=

∑
gikfkdik. (46)

(For convenience, we do not distinguish notationally between elements of F and their Hilbert
space representations.)

Remark: The same bimodule structure and the Dirac operator defined below were already
employed in [15], p 414ff.

An important object in various areas of modern analysis on manifolds or in Connes’
approach to non-commutative geometry is the so-called Dirac operator D (or rather, a certain
version or variant of its classical counterpart; for the wider context, see e.g. [5, 33–35]). As D
we will take in our context the operator

D :=
(

0 d∗

d 0

)
(47)

acting on

H =
(
H0

H1

)
(48)

with

d∗ = (δ1 − δ2). (49)

Note, however, that there may exist, in general, several possibilities to choose such an operator.
On the other hand, we consider our personal choice to be very natural from a geometrical
point of view.

Lemma 3.1. There exists in our scheme a natural chirality or grading operator χ and an
antilinear involution J, given by

χ :=
(

1 0
0 −1

)
(50)

with

[χ,F] = 0 χD + Dχ = 0 (51)

and

J :

(
x

y

)
→
(

x

y

)
(52)

so that

J · f · J = f̄ . (53)
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These are some of the ingredients which establish what Connes calls a spectral triple
(cf e.g. [23, 24]). We do not want, however, to introduce the full machinery at the moment as
our scheme has an independent geometric meaning of its own. Note, in particular, what we
are saying below about (non) compactness of various operators in observation 3.3.

Definition 3.2 (Spectral triplets). As spectral triplet on a general graph we take

(H,F,D). (54)

In our general framework, we obtained in a relatively straightforward manner a Hilbert
space as the direct sum of the node space (a function space) and the bond space (resembling
the set of cotangent vectors) and a Dirac operator which emerged naturally as a type of square
root of the Laplacian.

On the other hand, if one studies simple models as, for example, in [25–27], other choices
are possible. In [25, 26], where the one-dimensional lattice was studied, the symmetric
difference operator was taken as Dirac operator. In [27] the one-dimensional lattice was
assumed to be directed (i.e., in our notation, only di,i+1 were present) and the Dirac operator
was defined (somewhat ad hoc) as a certain self-adjoint ‘doubling’ of the (one-sided, i.e.
non-symmetric) adjacency matrix. As we will show below, this latter model fits naturally in
our general approach which includes both directed and undirected graphs. All these Dirac
operators are different and hence it is no wonder that they lead to different consequences
(see below). It is our opinion that, in the end, an appropriate choice has to be dictated
through physical intuition. Nevertheless, this apparent non-uniqueness should be studied
more carefully.

As can be seen from the above discussion, the connection with the graph Laplacian is
relatively close since for a symmetric graph, for example, we have

D2 =
(
d∗d 0

0 dd∗

)
(55)

and

d∗d = −2� (56)
dd∗ is the corresponding object on H1. (In the vector analysis of the continuum the two entries
correspond to divgrad and graddiv, respectively.)

In the original approach of Connes, great emphasis was laid on the compactness of
operators like the inverse of the Dirac operator and it is part of the general definition of a
spectral triple. As discrete spaces of the kind we are studying are non-trivial examples of
non-commutative spaces, it is interesting that we can easily test whether or not this assumption
is fulfilled in our particular setting. As may be expected, for graphs with globally bounded
node degree, we have the following result:

Observation 3.3. Note that all our operators are bounded, the Hilbert space is (in general)
infinite dimensional; hence there is no chance to have, for example, (D − z)−1 or (D2 − z)−1

compact. At the moment we are sceptical whether or not this latter phenomenon dissappears
generically if the vertex degree is allowed to become infinite. There are some results on spectra
of random graphs which seem to have a certain bearing on this problem (cf e.g. [28]).

In the following sections, we introduce and calculate the so-called Connes-distance
functional and compare it, among other things, with the ordinary graph distance. In doing
this, we have to calculate the commutator [D,f ] applied to an element f ′ ∈ H0. We have

(df )f ′ =
∑
ik

(fkf
′
k − fif

′
i ) dik (57)

(f d)f ′ =
∑
ik

fi(f
′
k − f ′

i ) dik (58)
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hence

[D,f ]f ′ =
∑
ik

(fk − fi)f
′
k dik. (59)

On the other hand, the right-module structure allows us to define df as an operator on H0 via

dff ′ =
(∑

ik

(fk − fi)dik

)(∑
k

f ′
knk

)
=
∑
ik

(fk − fi)f
′
k dik = [D,f ]f ′. (60)

In the next step, we define df as an operator on H1 which is not as natural as on H0. We define

df |H1 : dik → (fi − fk)nk (61)

and it is linearly extended. A short calculation shows

df |H1 = −(df̄ |H0)
∗ = [d∗, f ] (62)

with

[d∗, f ]g = d∗(fg) − f d∗g g ∈ H1. (63)

This then has the following desirable consequence:

Conclusion 3.4. With the above definitions the representation of df on H is given by

df |H =
(

0 df |H1

df |H0 0

)
=
(

0 −(df̄ |H0)
∗

df |H0 0

)
(64)

and it immediately follows

df |H =
(

0 [d∗, f ]
[d, f ] 0

)
= [D,f ]. (65)

4. The Connes-distance function on graphs

From the general theory of operators on Hilbert spaces we know that

‖T ‖ = ‖T ∗‖. (66)

Hence

Lemma 4.1.

‖[d, f ]‖ = ‖[d, f̄ ]‖ = ‖[d∗, f ]‖ (67)

and

‖[D,f ]‖ = ‖[d, f ]‖. (68)

Proof. The left part of (67) is shown below and is a consequence of formula (74); the right
identity follows from (66). With

X :=
(
x

y

)
(69)

and T1 := [d, f ], T2 := [d∗, f ], the norm of [D,f ] is

‖[D,f ]‖2 = sup{‖T1x‖2 + ‖T2y‖2; ‖x‖2 + ‖y‖2 = 1}. (70)

Normalizing now x, y to ‖x‖ = ‖y‖ = 1 and representing a general normalized vector X as

X = λx + µy λ,µ > 0 and λ2 + µ2 = 1 (71)
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we get

‖[D,f ]‖2 = sup{λ2‖T1x‖2 + µ2‖T2y‖2; ‖x‖ = ‖y‖ = 1, λ2 + µ2 = 1} (72)

where now x, y can be varied independently of λ,µ in their respective admissible sets, hence

‖[D,f ]‖2 = sup{λ2‖T1‖2 + µ2‖T2‖2} = ‖T1‖2 (73)

as a consequence of equation (67). �

We see that in calculating ‖[D,f ]‖ we can restrict ourselves to the simpler expression
‖[d, f ]‖. We infer from the above calculations (x ∈ H0),

‖df x‖2 =
∑
i


 vi∑

j=1

∣∣fi − fkj
∣∣2|xi|2


 (74)

and the corresponding expression for a directed graph with vi replaced by vout
i . Abbreviating

vi∑
j=1

∣∣fkj − fi
∣∣2 =: ai � 0 (75)

and calling the supremum over i as , it follows

‖df x‖2 = as

(∑
i

ai

as
|xi|2

)
� as (76)

for ‖x‖2 = ∑
i |xi|2 = 1.

On the other hand, choosing an appropriate sequence of normalized basis vectors eν so
that the corresponding aν converge to as we get

‖df eν‖2 → as. (77)

Hence we have

Theorem 4.2.

‖[D,f ]‖ = supi


 vi∑

j=1

∣∣fkj − fi
∣∣2

1/2, supi


 vout

i∑
j=1

∣∣fkj − fi
∣∣2

1/2 respectively. (78)

The Connes-distance functional between two nodes n, n′ is now defined as follows:

Definition 4.3 (Connes-distance function).

distC(n, n′) := sup{|fn′ − fn|; ‖[D,f ]‖ = ‖df ‖ � 1}. (79)

We would like to note that Davies in [15] introduced several metrics on graphs, which have
been motivated, as he remarks, by his study of heat kernels on Riemannian manifolds. What
he calls metric d3, is related to the rhs of the equation in theorem 4.2 (he uses slightly different
Hilbert spaces). Then he shows in a longer proof that this metric is identical to another one, d4,
which corresponds to the lhs of the equation in the above theorem. In our approach, however,
the content of theorem 4.2 is derived in a relatively transparent and straightforward way.

Remark 4.4. It is easy to prove that this defines a metric on the graph.

Corollary 4.5. It is sufficient to vary only over the set {f ; ‖df ‖ = 1}.



Dirac operators and the calculation of the Connes metric 771

Proof. This follows from

|fk − fi | = c|fk/c − fi/c| c = ‖df ‖ (80)

and

‖d(f/c)‖ = c−1‖df ‖ = 1 (81)

with c � 1 in our case. �
In general, it turns out to be a non-trivial task to calculate this distance on an arbitrary

graph as the nature of the above constraint is quite subtle. The underlying reason is that the
constraint is, in some sense, inherently non-local. As f is a function, the difference, fn′ − fn,
has to be the same independent of the path we follow, connecting n′ and n. However, in a
typical optimization process one usually deals with the individual jumps, fk − fi , between
neighbouring points along some path. Then it is not clear at all whether or not these special
choices of jumps along such a path can be extended to a global function without violating the
overall constraint on the expression in theorem 4.2. Nevertheless we think the above closed
form is a solid starting point for the calculation of distC on various classes of graphs or lattices.
We illustrate this by proving some a priori estimates concerning this distance function and by
evaluating it for some examples.

4.1. Some general estimates

Having an admissible function f so that supi
(∑vi

k=1 |fk − fi |2
)1/2 � 1 implies that, taking a

minimal path γ from, say, n to n′, the jumps |fν+1 − fν | between neighbouring nodes along
the path have to fulfil

|fν+1 − fν | � 1 (82)

and, a fortiori, have to be strictly smaller than 1 in the general situation.
On the other hand, the Connes distance can only become identical to the ordinary

distance d(n, n′) if there exists a sequence of admissible node functions with all these jumps
approaching the value 1 along such a path, which is however impossible in general, as can be
seen from the structure of the constraint on the expression in theorem 4.2. Only in this case
does one get ∣∣∣∣∣

∑
γ

(fν+1 − fν)

∣∣∣∣∣ →
∑
γ

1 = length(γ ). (83)

We formulate this observation as follows:

Lemma 4.6 (Connes distance). Within our general scheme one has the following inequality:

distC(n, n′) � d(n, n′). (84)

By the same token one can prove that distC between two nodes is bounded by the corresponding
Connes distance calculated for the (one-dimensional) sub-graph formed by a minimal path
connecting these nodes, i.e.

distC(n, n′) � distC(minimal path)(n, n′). (85)

The reason is that one has more admissible functions at one’s disposal for a sub-graph.
With G′ a connected sub-graph of G, the set of admissible function, SG′ , on G′ contains the
restrictions of the functions of the corresponding set, SG, belonging to G, as each restriction to
G′ of a member belonging to SG lies in SG′ . Hence the supremum is, in general, larger on SG′ .
The distance along such a path, however, can be rigorously calculated (see the discussion of
some examples below) and is for non-neighbouring nodes markedly smaller than the ordinary
graph distance. From what we have said we can also infer the following corollary.
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Corollary 4.7. With G′ a connected sub-graph of G it holds (with n, n′ ∈ V ′ ⊂ V )

distC(n, n′;G) � distC(n, n′;G′). (86)

One can also give sufficient criteria for distC(n, n′) < d(n, n′). The cases of undirected
and directed graphs have to be treated a little bit differently.

Lemma 4.8. Let G be an undirected graph and γ a minimal path of length l > 1, connecting
n, n′. There is at least one node, n∗, belonging to γ , having node degree � 2 (as there are at
least two consecutive edges, belonging to γ ). If

distC(n, n′) = l = d(n, n′) (87)

all the individual jumps along γ have to be 1. But then the corresponding function cannot be
admissible at n∗. Hence

distC(n, n′) < d(n, n′). (88)

Let G now be a directed graph and let there exist two different paths, γ, γ ′, of equal
lengths, l > 1, connecting n, n′. Again there exists a node n∗ on γ so that it is incident with
two edges, one belonging to γ , the other to γ ′. Along both edges the jumps have to be 1 and
again the admissibility of the corresponding function is violated. Again we can conclude

distC(n, n′) < d(n, n′). (89)

Remark: The latter situation will be discussed below in the example of the directed Z
2-lattice.

We remarked above that the calculation of the Connes distance on graphs is, to a large
extent a, continuation problem for admissible functions, defined on sub-graphs. Then the
following question poses itself. For what classes of graphs and/or sub-graphs do we have an
equality in the above corollary? We start from a given graph G0 = (V0, E0) and then add new
nodes and bonds, yielding a new graph G′ = (V ′, E′). We consider two fixed nodes n0, n

′
0

in G0.

Assumption 4.9. We assume that the above process does not create new paths between nodes
belonging to G0. In other words, the paths, connecting n0 and n′

0 are contained in G0.

Lemma 4.10. Under this assumption, each admissible function on G0 can be extended to an
admissible function on G′.

Proof. In the first step, we construct the set of nearest neighbours, V1\V0 in V ′\V0 relative
to V0. Each new node in V1\V0 has a unique nearest neighbour in V0 since otherwise there
would exist a new path between these two nodes lying in G0. With n ∈ V1\V0 we extend an
admissible function on G0 as follows:

fn := fn0 n0 is the unique nearest neighbour in V0. (90)

This extended function is an admissible function on G1 := (V1, E1). Note however that, by
assumption, there do not exist bonds in E1, connecting nodes in V1\V0. We can now continue
this process until we arrive at the graph G′. �

By the same token we see that

distC(n0, n
′
0;G1) = distC(n0, n

′
0;G0). (91)

This holds at every intermediate step and we get
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Lemma 4.11. Under the above assumption we have

distC(n0, n
′
0;G0) = distC(n0, n

′
0;G′). (92)

Corollary 4.12. If G is a tree, it holds

distC(n; n′) = distC(n; n′; minimal path). (93)

Proof. In a tree there exists, by definition, at most one path, connecting two nodes. We can
take this path as the connected sub-graph G0 and make the above extension, since G and G0

fulfil the assumption. �
The graphs so constructed are, however, rather special, consisting, so to speak, of a start

graph plus some added hair.
We have given above sufficient conditions for

distC(n, n′;G0) = distC(n, n′;G) (94)

with G an extension of G0 and n, n′ ∈ V0. We show now that the emergence of too short new
paths represents the obstruction for such a result to hold in general.

So let G0 be a graph again and assume the existence of two nodes, n, n′, in V0 with

distC(n, n
′;G0) > l ∈ N. (95)

We extend G0 to some G by adding new nodes and edges. We know that for admissible
functions the elementary jumps along an edge have to fulfil |fi − fk| � 1. If there exists a
new path γ in G, connecting n, n′, with

length(γ ) � l (96)

we can conclude that for each admissible function on G it must hold

|f (n) − f (n′)| � l. (97)

Hence we have

Lemma 4.13. If two nodes in G0 have distC(n, n′;G0) > l and if there exists a path γ in G,
connecting n, n′ and having length l � l, it necessarily holds that

distC(n, n
′;G) � l < distC(n, n

′;G0). (98)

Up to now we have derived upper bounds on distC relative to distC on sub-graphs or the
canonical graph distance d(n, n′). In the following, we will derive a quite efficient lower
bound. This is done by defining a particular admissible function, depending on an arbitrary
base node, n0. As the admissible function we choose the canonical graph distance, starting
from the arbitrary but fixed node, n0, divided by the local vertex degree; that is,

fn0(n) := (vn)
−1/2d(n0, n) fn0(n) := (

v(out)
n

)−1/2
d(n0, n) fn0(n0) = 0 (99)

for undirected and directed graphs, respectively.
From our general results we have

‖df ‖ = sup
i


 vi∑

j=1

|fkj − fi |2



1/2

(100)

or vi replaced by v
(out)
i . Inserting the above particular function we get

‖df ‖ � 1 (101)

as each term, |fkj − fi |, is either 0 or 1 (depending on whether the distance to the base point
remains constant or changes by ±1).
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Lemma 4.14. The functions fn0(n), n0 an arbitrary node in G, are admissible.

With two arbitrary nodes n, n′ in G we take n as base point n0, and have

fn0(n
′) − fn0(n) = fn0(n

′) = (vn′)−1/2d(n′, n) (102)

(as fn0(n) = fn0(n0) = 0). As distC is the supremum over admissible functions, we get

Theorem 4.15.

distC(n, n
′) �

(
v(n,n′)

)−1/2
d(n, n′) (103)

with v(n,n′) the minimum of the (out) vertex degrees at n, n′, respectively.

Note that one can of course choose either n or n′ as the base point in the definition of the
above admissible function.

4.2. Examples

The general results derived above should be compared with the results in, e.g., [25–27].
Choosing the symmetric difference operator as the ‘Dirac operator’ in the case of the one-
dimensional lattice, the authors in [25, 26] obtained a distance which is strictly greater than the
ordinary distance but their choice does not fulfil the above natural constraint given in theorem
4.2. Note, in particular, that our operator d is a map from node- to bond-functions which is
not the case in these examples. In [27] the authors employed a symmetric doubling of the
non-symmetric adjacency matrix of the one-dimensional directed lattice Z

1 as Dirac operator.
With v

(out)
i = 1 in this example, our above general estimate yields

d(n, n′) � distC(n, n
′) � d(n, n′) ⇒ distC(n, n

′) = d(n, n′) (104)

that is, we get the same result for our Dirac operator as for the choice made in [27].
We conclude this paper with the discussion of several examples, which show that, in

general, it is quite a non-trivial task to calculate distC . The first one is a simple warm-up
exercise, the second is the one-dimensional undirected lattice Z

1, discussed also by some
of the authors mentioned above (treated, however, within their own schemes) and is not so
simple. The last is the directed Z

2-lattice, which we do not solve in closed form, but we
provide several estimates.

The technique used in approaching some of the problems may be interesting, in general.
It turns out that the proper mathematical context, to which our strategy does belong, is the field
of (non)linear programming or optimization (see, e.g., [36] or any other related book). This
can be inferred from the structure of the constraints we get. This means that the techniques
developed in this field may perhaps be of use in solving such intricate problems.

First example: The square with vertices and edges

x1 − x2 − x3 − x4 − x1. (105)

Let us calculate the Connes distance between x1 and x3. As the sup is taken over functions,
the summation over elementary jumps is (or rather has to be) path independent (this represents
a subtle constraint for practical calculations). It is an easy exercise to see that the sup can be
found in the class where the two paths between x1, x3 have the valuations (1 � a � 0)

x1 − x2: a x2 − x3: (1 − a2)1/2 (106)

x1 − x4: (1 − a2)1/2 x4 − x3: a. (107)

Hence one has to find sup0�a�1(a +
√

1 − a2). Setting the derivative with respect to a to zero,
one gets a = √

1/2. That is,
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Example 4.16 (Connes distance on a square).

distC(x1, x3) =
√

2 < 2 = d(x1, x3). (108)

Remark 4.17. As vi = 2, our a priori estimate in theorem 4.15 is saturated as

distC(x1, x2) � (2)−1/2 × 2 =
√

2. (109)

The next example is considerably more complicated.

Second example: The undirected one-dimensional lattice
The nodes are numbered by Z. We want to calculate distC(0, n) within our general framework.
The calculation will be done in two main steps. In the first part, we make the (in principle
quite complicated) optimization process more accessible. For the sake of brevity we state
without proof that it is sufficient to discuss real monotonically increasing functions with

f (k) =
{
f (0) for k � 0
f (n) for k � n

(110)

and we write

f (k) = f (0) +
k∑

i=1

hi for 0 � k � n hi � 0. (111)

The above optimization process then reads

Observation 4.18. Find sup
∑n

i=1 hi under the constraint

h2
1 � 1 h2

2 + h2
1 � 1, . . . , h2

n + h2
n−1 � 1 h2

n � 1. (112)

The simplifying idea is now the following. Let h := (hi)
n
i=1 be an admissible sequence with

all h2
i+1 + h2

i < 1. We can then find another admissible sequence h′ with∑
h′
i >

∑
hi. (113)

Hence the supremum cannot be taken on the interior. We conclude that at least some h2
i+1 +h2

i

have to be 1. There is then a minimal i for which this holds. We can convince ourselves that
the process can now be repeated for the sub-string ending at i + 1. Repeating the argument
we can fill up all the entries up to place i + 1 with the condition h2

l+1 + h2
l = 1 and proceeding

now upwards we end up with

Lemma 4.19 The above supremum is assumed within the subset

h2
1 � 1, h2

1 + h2
2 = 1, . . . , h2

n−1 + h2
n = 1, h2

n � 1. (114)

This concludes the first step.
In the second step we calculate sup |f (0) − f (n)| on this restricted set. From the above

lemma we now have the constraint

h2
1 � 1 h2

2 = 1 − h2
1 h2

3 = h2
1 h2

4 = 1 − h2
1 . . . h

2
n = 1 − h2

1 or h2
1 (115)

depending on n even or odd. This yields

sup |f (0) − f (n)| =




1 for n = 1

(n/2) sup
(
h1 +

√
1 − h2

1

) = (n/2)
√

2 for n even

sup
(
[n/2]

(
h1 +

√
1 − h2

1

)
+ h1

)
for n uneven.

(116)
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In the case where n is even the rhs can be written as
√
n2/2 =

√
[n2/2]. In the case where n

is odd, we get by differentiating the rhs and setting it to zero,

hmax
1 = An/

√
1 + A2

n

√
1 − (

hmax
1

)2 = 1
/√

1 + A2
n (117)

with An = 1 + 1/[n/2]. We see that for increasing n both terms approach 1/
√

2, the result
in the even case. Furthermore, we see that the distance is monotonically increasing with n as
should be the case for a distance. This yields in the odd case

distC(0, n) = ([n/2] + 1)An + [n/2]√
1 + A2

n

(118)

which is a little bit nasty. Both expressions can, however, be written in a more elegant and
unified way (this was a conjecture by W Kunhardt, inferred from numerical examples). For n
uneven, a short calculation yields

[n2/2] = (n2 − 1)/2 = 1
2 (n − 1)(n + 1) = 2[n/2]([n/2] + 1) (119)

(with the floor, ceiling notation the expressions would become even more elegant). With the
help of the latter formula the rhs in (118) can be transformed into

([n/2] + 1)An + [n/2]√
1 + A2

n

=
√

[n2/2] + 1. (120)

Conclusion 4.20. For the one-dimensional undirected lattice we have

distC(0, n) =
{√

[n2/2] for n even√
[n2/2] + 1 for n odd.

(121)

Remark 4.21. Again comparing the exact result with our lower bound, we find for n even

distC(0, n) � (2)−1/2n = (2)1/2(n/2) (122)

that is, the lower bound is again saturated. For n odd we have instead

distC(0, n) = (2)−1/2(n2 + 1)1/2 > (2)−1/2n. (123)

Third example: The directed lattice Z
2

The vertices in Z
2
d are denoted by (i, j) or (x, y). The edges point from (i, j) to (i + 1, j) and

(i, j + 1); hence, vout
i = 2. As the system is translation invariant, it suffices to calculate the

Connes distance between nodes (0, 0) and (x, y) with x, y > 0.
For nodes lying parallel to the x-, y-axis, respectively, we have

distC(n, n′) = d(n, n′). (124)

For x or y = 0, there is only one minimal path, connecting (0, 0) and (x, y). Therefore,
lemma 4.8 does not apply. For, say, y = 0, we choose the following admissible function:

f (x, y) := x for all y. (125)

We have

|f (x, 0) − f (0, 0)| = |x| = d((0, 0), (x, 0)) (126)

and can conclude

distC((0, 0), (x, 0)) = d((0, 0), (x, 0)) (127)

on Z
2
d . The same holds for the y-axis.
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For nodes with both x, y 
= 0, we have more than one minimal path connecting (0, 0) and
(x, y). Our lemma then shows that, necessarily,

distC(n, n
′) < d(n, n′). (128)

More detailed estimates will be given below.
If we try to really calculate the Connes distance on Z

2
d for points in general positions,

the optimization problem becomes quite involved and we will only provide some estimates.
The reason is that the constraint equations are of a quite non-local nature (compared with the
simpler undirected Z

1-lattice) and that, in general, several minimal paths do exist which make
the continuation problem quite intricate.

It is easy to see that the canonical graph distance between the points (0, 0) and (x, y)
is |x| + |y| and that all minimal paths have the same length. With x, y > 0, we conjecture
(without giving a proof) that it suffices to restrict the variation to admissible functions with
positive jumps in the positive x-, y-directions and that we can set f (0, 0) = 0. A particular
minimal path consists of x steps in the x-direction followed by y steps in the y-direction. We
denote (for convenience) the jumps along the x-, y-axes, respectively, by

hi0 := f (i, 0) − f (i − 1, 0) � 0 h0j := f (0, j) − f (0, j − 1) � 0. (129)

The optimization problem now reads

Problem 4.22. Find sup
(∑x

i=1 hi0 +
∑y

j=1 h0j

)
under the constraints imposed by the

admissibility of the corresponding function f . Note, however, that the constraints must
hold on the full lattice.

From our general result in theorem 4.15, we know that

distC((0, 0), (x, y)) � (2)−1/2(x + y). (130)

We can construct an admissible function, f , which fulfils

|f (0, 0) − f (x, y)| = (2)−1/2(x + y). (131)

This can be achieved by setting f (0, 0) = 0 and by choosing all x-, y-jumps equal to a with
2a2 = 1 ⇒ a = (2)−1/2. This yields the above result.

The question is, whether or not this is already the supremum over the set of admissible
functions. We will show that this is not the case by providing another admissible function
yielding a bigger value. We choose an admissible function with x-jumps equal to a and
y-jumps equal to b with a2 + b2 = 1. The admissible function reads

f (x, y) = ax + by. (132)

The function f takes a stationary value at

a = (x2/(x2 + y2))1/2 b = (y2/(x2 + y2))1/2 (133)

yielding the value

f (x, y) = (x2 + y2)1/2. (134)

Assuming, for example, that x 
= y, it follows that

f (x, y)2 − ((2)−1/2(x + y))2 = 1
2 (x

2 + y2) − xy = 1
2 (x − y)2 > 0. (135)

In other words, we see

Observation 4.23. For the directed Z
2-lattice and x 
= y (x, y > 0), we have the estimate

d((0, 0), (x, y)) > distC((0, 0), (x, y)) � (x2 + y2)1/2 > (2)−1/2(x + y). (136)
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